5 research outputs found

    Safe surgery for glioblastoma: Recent advances and modern challenges.

    Get PDF
    One of the major challenges during glioblastoma surgery is balancing between maximizing extent of resection and preventing neurological deficits. Several surgical techniques and adjuncts have been developed to help identify eloquent areas both preoperatively (fMRI, nTMS, MEG, DTI) and intraoperatively (imaging (ultrasound, iMRI), electrostimulation (mapping), cerebral perfusion measurements (fUS)), and visualization (5-ALA, fluoresceine)). In this review, we give an update of the state-of-the-art management of both primary and recurrent glioblastomas. We will review the latest surgical advances, challenges, and approaches that define the onco-neurosurgical practice in a contemporary setting and give an overview of the current prospective scientific efforts

    The PROGRAM study: awake mapping versus asleep mapping versus no mapping for high-grade glioma resections: study protocol for an international multicenter prospective three-arm cohort study.

    Get PDF
    INTRODUCTION The main surgical dilemma during glioma resections is the surgeon's inability to accurately identify eloquent areas when the patient is under general anaesthesia without mapping techniques. Intraoperative stimulation mapping (ISM) techniques can be used to maximise extent of resection in eloquent areas yet simultaneously minimise the risk of postoperative neurological deficits. ISM has been widely implemented for low-grade glioma resections backed with ample scientific evidence, but this is not yet the case for high-grade glioma (HGG) resections. Therefore, ISM could thus be of important value in HGG surgery to improve both surgical and clinical outcomes. METHODS AND ANALYSIS This study is an international, multicenter, prospective three-arm cohort study of observational nature. Consecutive HGG patients will be operated with awake mapping, asleep mapping or no mapping with a 1:1:1 ratio. Primary endpoints are: (1) proportion of patients with National Institute of Health Stroke Scale deterioration at 6 weeks, 3 months and 6 months after surgery and (2) residual tumour volume of the contrast-enhancing and non-contrast-enhancing part as assessed by a neuroradiologist on postoperative contrast MRI scans. Secondary endpoints are: (1) overall survival and (2) progression-free survival at 12 months after surgery; (3) oncofunctional outcome and (4) frequency and severity of serious adverse events in each arm. Total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. ETHICS AND DISSEMINATION The study has been approved by the Medical Ethics Committee (METC Zuid-West Holland/Erasmus Medical Center; MEC-2020-0812). The results will be published in peer-reviewed academic journals and disseminated to patient organisations and media. TRIAL REGISTRATION NUMBER ClinicalTrials.gov ID number NCT04708171 (PROGRAM-study), NCT03861299 (SAFE-trial)

    Impact of dedicated neuro-anesthesia management on clinical outcomes in glioblastoma patients: A single-institution cohort study

    Get PDF
    Background Glioblastomas are mostly resected under general anesthesia under the supervision of a general anesthesiologist. Currently, it is largely unkown if clinical outcomes of GBM patients can be improved by appointing a neuro-anesthesiologist for their cases. We aimed to evaluate whether the assignment of dedicated neuro-anesthesiologists improves the outcomes of these patients. We also investigated the value of dedicated neuro-oncological surgical teams as an independent variable in both groups. Methods A cohort consisting of 401 GBM patients who had undergone resection was retrospectively investigated. Primary outcomes were postoperative neurological complications, fluid balance, length-of-stay and overall survival. Secondary outcomes were blood loss, anesthesia modality, extent of resection, total admission costs, and duration of surgery. Results 320 versus 81 patients were operated under the anesthesiological supervision of a general anesthesiologist and a dedicated neuro-anesthesiologist, respectively. Dedicated neuroanesthesiologists yielded significant superior outcomes in 1) postoperative neurological complications (early: p = 0.002, OR = 2.54; late: p = 0.003, OR = 2.24); 2) fluid balance (p<0.0001); 3) length-of-stay (p = 0.0006) and 4) total admission costs (p = 0.0006). In a subanalysis of the GBM resections performed by an oncological neurosurgeon (n = 231), the assignment of a dedicated neuro-anesthesiologist independently improved postoperative neurological complications (early minor: p = 0.0162; early major: p = 0.00780; late minor: p = 0.00250; late major: p = 0.0364). The assignment of a dedicated neuro-oncological team improved extent of resection additionally (p = 0.0416). Conclusion GBM resections with anesthesiological supervision of a dedicated neuro-anesthesiologists are associated with improved patient outcomes. Prospective evidence is needed to further investigate the usefulness of the dedicated neuro-anesthesiologist in different settings
    corecore